
Oliver McFadden 1

Doom 3 → Dante

Performance on Mesa (i965)
(Not a Demo!)

Oliver McFadden 2

Quick overview of Doom 3
● GPLv3+ (with additional terms) on November 22, 2011.

– Without “Carmack's Reverse” (aka depth fail) shadows.
Date: Fri, 25 Nov 2011 01:32:56 +0200

Subject: [PATCH v3 1/1] renderer: added support for Carmack's Reverse (depth
fail) shadows.

● OpenGL 1.x + OpenGL extensions.
– Some of which are requirements.

● X11 and GLX.
● 8 years old.
● ARB2 backend (best backend)

– ARB_vertex_program && ARB_fragment_program.

– Other backends available for older hardware.

● ARB_vertex_buffer_object used when available, otherwise
fallback to virtual memory.

Oliver McFadden 3

Quick overview of Dante
● OpenGL ES2.0

– EGL

– GLSL primary backend
● ARB2 backend remains for debugging on the desktop; stubbed out when compiled

for ES2.0
● Carmack's Reverse (depth fail) added back

– VBO requirement

– ARBvp and ARBfp programs are not part of the GPLv3+ release
● “Clean-room” programs written in GLSL
● Phong (rather than Blinn-Phong) shading model.

– More computationally expensive but delivers much more realistic rendering.
● Optional Half-Lambert lighting (see example on next slide: Phong + Half-Lambert.)

● Support for Android...
– You'd better have a high-end device!

– “Some” bugs and missing features...

Oliver McFadden 4

Lambert vs Half-Lambert

Oliver McFadden 5

Half-Lambert Gone Wrong?

Oliver McFadden 6

Optimization on Mesa
● Unfortunately no really great tools for Mesa

performance analysis...
– i965: intel_gpu_top: works like regular `top' –

● No support for per-frame analysis,
● No support for pretty graphs (unless you're into ASCII art.)

– Useful for rough estimate of GPU load.

– Basically unusable output for game devs who haven't
read and understood Intel HW docs.

● Game devs typically don't want to read low-level HW docs...

● So, what should we do to fix this for Mesa drivers?
– Quick example of intel_gpu_top first...

Oliver McFadden 7

intel_gpu_top
 render busy: 37%: ######## render space: 69/131072

bitstream busy: 0%: bitstream space: 0/131072

 blitter busy: 36%: ######## blitter space: 30/131072

 task percent busy

 GAM: 68%: ############## vert fetch: 0 (0/sec)

 CS: 37%: ######## prim fetch: 0 (0/sec)

 PSD: 32%: ####### VS invocations: 33076780 (1617385/sec)

 DAP: 28%: ###### GS invocations: 0 (0/sec)

 RCPFE: 28%: ###### GS prims: 0 (0/sec)

 IZ: 28%: ###### CL invocations: 16538390 (808744/sec)

 RCPBE: 28%: ###### CL prims: 11324693 (689777/sec)

 RCC: 28%: ###### PS invocations: 11415570625 (347597257/sec)

 WMFE: 28%: ###### PS depth pass: 11132520857 (340957947/sec)

 EU 30: 26%: ######

 SVG: 26%: ######

 EU 10: 25%: #####

 EU 00: 25%: #####

 HIZ: 25%: #####

 EU 20: 25%: #####

 TD: 25%: #####

 SVRW: 25%: #####

 IC 3: 23%: #####

 WMBE: 23%: #####

 IC 2: 23%: #####

 IC 0: 23%: #####

 IC 1: 23%: #####

 EU 01: 22%: #####

Oliver McFadden 8

Better debugging/analysis tools!
● AMD's gDEBugger works on GNU/Linux, but only with

AMD hardware and fglrx.
– Older pre-AMD versions used to run with Mesa, but have

problems with modern glibc.
– Proprietary tool (both pre and post-AMD versions.)
– Basically unusable for me...

● Nvidia, SGX, ... have similar tools for their proprietary
drivers.

● We don't have any great tools for Mesa...
– But we should!

Oliver McFadden 9

Oliver McFadden 10

Linux kernel and `perf' system...
● https://perf.wiki.kernel.org

– Stumbled across this by accident while looking at CPU profiling.

perf provides rich generalized abstractions over hardware specific
capabilities. Among others, it provides per task, per CPU and per-
workload counters, sampling on top of these and source code event
annotation.

– perf stat: obtain event counts

– perf record: record events for later reporting

– perf report: break down events by process, function, etc.

– perf annotate: annotate assembly or source code with event counts

– perf top: see live event count

Oliver McFadden 11

Kernel `perf' system and Mesa
● Possibly create infrastructure in DRM and hook into `perf' sub-system?
● Needs some cooperation with userspace:

– Mesa should indicate frame termination without causing a stall, e.g.
● OUT_BATCH(SCRATCH_REG_0, 0xDEADD00D);

– Could be done at swap buffers or more intelligently with the
GL_GREMEDY_frame_terminator extension (with application support.)

● Userspace debugger could read the data from kernel and generate pretty
graphs, suggestions, etc.
– Interactive GUI,

– HTML report,

– ASCII art. ;-)

● Very much hand waving at this point. No prototype implementation.

Oliver McFadden 12

Mesa debug output
● Mesa drivers may be able to provide “hints” for the OpenGL application:

if (ctx->Scissor.Enabled)

perf_debug("Failed to fast clear depth due to scissor being enabled.

 Possible 5%% performance win if avoided.\n");

● 20 dwords to change surface state (disable the scissor test.)
– How to synchronize these with the data from kernel `perf' system?
– Possibly with a carefully managed frame counter?

● Userspace debugger could match frame counter of data fetched from `perf'
system and strings fetched from ARB_debug_output.
– Currently perf_debug() does not output to ARB_debug_output!

● ARB_debug_output works as long as the debugger and OpenGL application are
in the same context...
– But we probably do not want such a solution; it's ugly and we lose any benefits of having

the debugger as a separate process.
– Not quite sure how to handle Mesa debug output with the debugger in a separate

process... Suggestions?

Oliver McFadden 13

GLX vs EGL
● Dante (OpenGL ES2.0, X11 (XCreateWindow et al), EGL):

– +timedemo demo1
– vblank_mode=0

2148 frames rendered in 64.6 seconds = 33.3 fps

MessageBox: Time Demo Results - 2148 frames rendered in 64.6 seconds = 33.3 fps

● Dante (OpenGL ES2.0, X11 (XCreateWindow et al), GLX):

– +timedemo demo1
– vbank_mode=0

2148 frames rendered in 47.2 seconds = 45.5 fps

MessageBox: Time Demo Results - 2148 frames rendered in 47.2 seconds = 45.5 fps

● Mesa appears to ignore vblank_mode in the EGL code...

src/egl/drivers/dri2/platform_x11.c- struct dri2_egl_surface *dri2_surf =
dri2_egl_surface(surf);

src/egl/drivers/dri2/platform_x11.c-#endif

src/egl/drivers/dri2/platform_x11.c-

src/egl/drivers/dri2/platform_x11.c: /* XXX Check vblank_mode here? */

src/egl/drivers/dri2/platform_x11.c-

src/egl/drivers/dri2/platform_x11.c- if (interval > surf->Config->MaxSwapInterval)

src/egl/drivers/dri2/platform_x11.c- interval = surf->Config->MaxSwapInterval;

Oliver McFadden 14

Conclusion
● Bottom line: We need better performance analysis tools.

● Intel has done work on Mesa/i965 optimization with
Valve Software for their “Left 4 Dead 2” game:
– Eric Anholt, Ian Romanick, and Ken Graunke at Valve's

headquarters in person.

– Possible for a large game development studio,

– Not possible for indie game developers.

● Performance tools will never be as good as experts in
person, but can still be very useful.

Oliver McFadden 15

Questions? / Comments?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

