
KMS: atomic modeset/pageflip

Rob Clark

What is it?

• Atomic pageflip
– Updating CRTC fb and/or one or more plane fb's atomically (in a single

vblank)
– Also possibly adjusting properties: z-order, alpha blending modes, rotation,

colorspace-conversion coefficients, etc
– 'test' flag to allow userspace to check a proposed configuration first

• Atomic modeset
– Configuring one or more CRTCs

– 'test' flag to allow checking if the proposed combination of
timings/resolutions are supported by the hw

Why do we need it?

• Atomic pageflip
– Compositors using overlay planes to bypass GPU for compositing surfaces

• Need to keep bypassed surface state (size, position, fb) in sync w/ GPU
composition output on CRTC layer

• Need to know when they'll hit hw limits about overlay plane sizes/scaling/etc
– Some limits may be with combinations of multiple enabled planes
– So not easy to express limits statically to userspace

• Atomic modeset
– Userspace needs to know valid combinations of settings for multi-display
– Memory bandwidth limits, etc, may mean that certain resolutions are

possible with single display but not multiple displays

Property-ification..

• The proposed solution configures *everything* via properties

• We need to support taking a list of properties anyways

• Doing everything via properties means:
– common code-paths
– Future extensibility

• But then how does error checking work?
– Ie. valid fb dimensions, position, etc
– Short version: it is still there, but moves from the ioctl handler fxn
– Long version: on next slides

Splitting mode object mutable state

• What is in 'struct drm_{crtc,plane,etc}' is combination of:
– Mode state set from userspace: fb, {src,crtc}_{x,y,w,h}, etc
– Other: possible_crtcs, list head, funcs, etc

• For 'test' steps, we need to build up proposed state, and rollback
– Split into 'struct drm_{crtc,plane,etc}_state' simplifies things

• Just a single pointer to update to commit changes
• We could probably simplify crtc helpers change rollback this way

– Split out of state structs also lets us use helpers to:
• Avoid a lot of property nonsense in each driver for common properties
• Re-introduce the standard error checking lost from ioctl handler

int drm_plane_check_state(struct drm_plane *plane, struct drm_plane_state *state);
void drm_plane_commit_state(struct drm_plane *plane, struct drm_plane_state *state);
int drm_plane_set_property(struct drm_plane *plane, struct drm_plane_state *state,
 struct drm_property *property, uint64_t value);

• (And same for CRTC and eventually connector)

Splitting mode object mutable state (cont)

• Also, property values array moved into state structs
– Automatically keeps userspace visible property values in sync
– Don't get property values confused by 'test' step or failed config changes

 struct drm_plane_state {
 struct drm_crtc *crtc;
 struct drm_framebuffer *fb;

 /* Signed dest location allows it to be partially off screen */
 int32_t crtc_x, crtc_y;
 uint32_t crtc_w, crtc_h;

 /* Source values are 16.16 fixed point */
 uint32_t src_x, src_y;
 uint32_t src_h, src_w;

 struct drm_object_property_values propvals;
 };

• Drivers should wrap state structs w/ their own to add driver specifics:

 struct omap_plane_state {
 struct drm_plane_state base;
 uint8_t rotation;
 uint8_t zorder;
 };

Atomic funcs
• atomic_begin(dev) - allocate state token

• atomic_check(dev, state) – check proposed state
– Use drm_*_check_state() for common stuff

• atomic_commit(dev, state) – commit proposed state
– Do driver specific stuff, then drm_*_commit_state()

• atomic_end(dev, state) – cleanup/deallocate

• Example:
 state = dev->driver->atomic_begin(dev);

 if (page_flip->flags & DRM_MODE_PAGE_FLIP_EVENT)
 e = create_vblank_event(dev, file_priv, page_flip->user_data);

 for (i = 0; i < page_flip->count_props; i++)
 drm_mode_set_obj_prop_id(dev, state,
 prop.obj_id, prop.obj_type,
 prop.prop_id, prop.value);

 ret = dev->driver->atomic_check(dev, state);

 if (!(page_flip->flags & DRM_MODE_TEST_ONLY))
 ret = dev->driver->atomic_commit(dev, state, e);

 dev->driver->atomic_end(dev, state);

Other misc changes

• Object property type
– DRM_MODE_PROP_OBJECT
– To set crtc, fb, etc as a property

• Dynamic property flag
– DRM_MODE_PROP_DYNAMIC
– Hint to userspace about properties which can be safely changed without

'test' step

• Signed property ranges
– DRM_MODE_PROP_SIGNED

– Uses signed integer comparison to check for valid property values

TODO

• Don't remove plane->update_plane(), crtc->page_flip() yet
– These are no longer needed for 'property-ified' drivers
– But probably better to have a transition period, than port all drivers at once

• Still tweaking ioctl struct

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

