Power management update on Nouveau

Karol Herbst

23rd September 2016
Overview

1. Power Sensors
2. Static Power Consumption
3. GPU Boost
4. State of reclocking
5. Demos
Power Sensors

- Initial support in 4.6
- Improved to be useful in 4.9
- Exposed through hwmon
- Based on Martins initial work
- Supported on mid+-end GPUs starting with Fermi
- Can hint at bad GPU utilization within mesa
- Should be moved into the PMU
Static Power Consumption - Clock Gating

- Up to 25% power savings
- Benefits some high loads
- WIP for Fermi, Kepler and Maxwell
- doesn't work without secboot
Static Power Consumption - Power Gating

- Might be able to close the gap
- Use counting of engines already in place
- Needs a lot of REing
GPU Boost - Introduction

- Advances DVFS
- 1.0: increase clocks until reaching power target
- 2.0: increase clocks until reaching temperature target
- Added officially with Kepler
- Already some bits on Fermi
- Mostly implemented in the kernel driver
GPU Boost - How it (really) works

- Limiting the voltage on high temperatures
- Information defined in a bunch of VBIOS tables
GPU Boost - Voltage

- VID table
 - How to voltage (GPIOs, PWM)
 - What voltages can be set (ranges, step sizes)

- VMAP table
 - Voltage calculations depending on
 - T: Temperature
 - S: Individual chip calibration factor (Speedo)
 - Defines “max” voltage entries
 - $volt_0 = \frac{c_0}{10} + \frac{c_1 \cdot S}{10} + \frac{c_2 \cdot S^2}{10^5}$
 - $volt_1 = \frac{c_0 \cdot S^6}{2^{18}} + \frac{c_1 \cdot T \cdot S^5}{2^{10}} + \frac{c_2 \cdot S \cdot T^6}{2^{18}} + \frac{c_3 \cdot S^2 \cdot T^5}{2^{30}} + \frac{c_4 \cdot S^2 \cdot T^2 \cdot S^6}{2^{18}} + \frac{c_5 \cdot T^2 \cdot S^6}{2^{18}}$
 - $volt_2 = \text{min}$
 - $volt_3 = \frac{\text{min} + \text{max}}{2}$

- CSTEP table
 - Voltage requirements for a C-State
GPU Boost - Clocking

- **CSTEP table**
 - List of GPC clocks (C-States)
 - Defines max C-State of P-States

- **PMode table**
 - “Default” clocks for each engine

- **BOOST table**
 - Clock adjustments for Engines (eg. 90% of GPC clock)
 - Min/Max clocks for each P-State

- **VPSTATE table**
 - Actually (partly) documented!
 - Specifies Base clocks (confirmed)
 - ... and Boost clocks
GPU Boost - Example: GTX 780 Ti - speedo 0x610

Temperature °C

Voltage µV

C-State
Max
P-State Min
GPU Boost - Example: GTX 780 Ti - speedo 0x691

![Graph showing the relationship between temperature and voltage for C-State and P-State Max and Min.](image-url)
GPU Boost - nv_cmp_volt

- Reverse engineering tool
- Reads out hardware state
- Doesn’t interact with the NVIDIA driver
- Verifies Nouveau voltage algorithm against NVIDIA
- Demo later
GPU Boost - Solved problems

- Didn’t respect Voltage limits
- Tried to perfectly match voltage
- Missing voltage calculation
- No updates on temperature changes (WIP)
State of reclocking - What is in a good state?

- Hardware thermal protection up to GM10x
- Fan management up to GM10x
- Engine reclocking for most cards up to Maxwell
- Memory reclocking for Tesla (G92+), Kepler and Maxwell
- PCIe link configuring
- GPU Boost (partly in 4.9)
State of reclocking - Work in Progress

- PMU engine load counters for GT215+
- Memory reclocking on Fermi (Roy Spliet)
- Software thermal protection
- Power budgets
State of reclocking - What is missing?

- Clock read out while hardware thermal protected
- Maxwell2 fan control (signed PMU firmware required)
- Advanced GK110+ engine reclocking
- Hi-PLL Fermi+ engine reclocking
- Linebuffer/isohub? (flicker free memory reclocking)
- New fan control VBIOS table for Kepler+
- Memory reclocking on G80-G86
- Pascal is completely different
Policies
 - What is usable in general?
 - How to deal with spiky loads?

PMU notifies host about high/low loads

Various benchmarks needed
 - Performance
 - Interactive (Desktop environment)
 - Web browsers

Prototype!
Demos

- nv_cmp_volt
- DVFS