WIP: Implementation of a double floating point library in GLSL 1.30

Elie TOURNIER

Google Summer of Code 2016
Head of the operation: Ian Romanick

tournier.elie@gmail.com

September 23, 2016
Who am I?

- Elie Tournier
- Google Summer of Code 2016 Student
- Graduate Software and Image Processing Engineer
- Available for hire
Goal

- Iago Toral bring GL_ARB_gpu_shader_fp64 to Intel GPUs.
- A stretch goal would be to create GL_ARB_gpu_shader_fp64 for GPUs without FP64 hardware support.
- Create a FP64 support
The library is written in GLSL.

Use GLSL in order to use the graphics pipeline without having to use hardware-specific languages.

Can be convert to GLSL IR thanks to the standalone compiler.

Like I need to use bitwise operators, GPUs must be GLSL 1.30 (OpenGL 3.0).
I don’t want to reinvent the wheel.
Convert a CPU library to a GPU one.
Berkeley SoftFloat by John R. Hauser.
IEEE 754 compliant.
Dev environment

- Code in my GitHub.
- Use Shader_runner from Piglit.
- Debug and test shaders.
Example (Code Berkley SoftFloat)
typedef struct {
 !!!bits32 high, low;
} float64;

Example (Code libSoftFloat)
uvec2 fp64;
Example (Code Berkley SoftFloat)

```c
INLINE int16 extractFloat64Exp( float64 a )
{
    return ( a.high>>20 ) & 0x7FF;
}
```

Example (Code libSoftFloat)

```c
uint extractFloat64Exp( uvec2 a )
{
    return ( a.x>>20 ) & 0x7FFu;
}
```
Plan

- Finish to implement last FP64 operations.
- Integrate the lib to Mesa.
- Implement GL_ARB_gpu_shader_fp64.
References

- **John R. Hauser (2015)**
 Berkeley SoftFloat
 U.C. Berkeley.

- **Elie Tournier (2016)**
 libSoftFloat
 https://github.com/Hopetech/libSoftFloat
Thanks.